Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 71
1.
Biochim Biophys Acta Mol Cell Res ; 1870(5): 119471, 2023 06.
Article En | MEDLINE | ID: mdl-37028652

The mechanism behind peroxisomal membrane protein targeting is still poorly understood, with only two yeast proteins believed to be involved and no consensus targeting sequence. Pex19 is thought to bind peroxisomal membrane proteins in the cytosol, and is subsequently recruited by Pex3 at the peroxisomal surface, followed by protein insertion via a mechanism that is as-yet-unknown. However, some peroxisomal membrane proteins still correctly sort in the absence of Pex3 or Pex19, suggesting that multiple sorting pathways exist. Here, we studied sorting of yeast peroxisomal ABC transporter Pxa1. Co-localisation analysis of Pxa1-GFP in a collection of 86 peroxisome-related deletion strains revealed that Pxa1 sorting requires Pex3 and Pex19, while none of the other 84 proteins tested were essential. To identify regions with peroxisomal targeting information in Pxa1, we developed a novel in vivo re-targeting assay, using a reporter consisting of the mitochondrial ABC transporter Mdl1 lacking its N-terminal mitochondrial targeting signal. Using this assay, we showed that the N-terminal 95 residues of Pxa1 are sufficient for retargeting this reporter to peroxisomes. Interestingly, truncated Pxa1 lacking residues 1-95 still localised to peroxisomes. This was confirmed via localisation of various Pxa1 truncation and deletion constructs. However, localisation of Pxa1 lacking residues 1-95 depended on the presence of its interaction partner Pxa2, indicating that this truncated protein does not contain a true targeting signal.


ATP-Binding Cassette Transporters , Saccharomyces cerevisiae Proteins , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Amino Acid Sequence , Peroxisomes/genetics , Peroxisomes/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Membrane Proteins/genetics , Membrane Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Peroxins/genetics , Peroxins/metabolism
2.
Biol Chem ; 404(2-3): 209-219, 2023 02 23.
Article En | MEDLINE | ID: mdl-36534601

For the biogenesis and maintenance of peroxisomes several proteins, called peroxins, are essential. Malfunctions of these proteins lead to severe diseases summarized as peroxisome biogenesis disorders. The different genetic background of patient-derived cell lines and the residual expression of mutated PEX genes impede analysis of the whole spectrum of cellular functions of affected peroxins. To overcome these difficulties, we have generated a selected PEX knockout resource of HEK T-REx293 cells using the CRISPR/Cas9 technique. Comparative analyses of whole cell lysates revealed PEX-KO specific alterations in the steady-state level of peroxins and variations in the import efficacy of matrix proteins with a Type 2 peroxisomal targeting signal. One of the observed differences concerned PEX1 as in the complete absence of the protein, the number of peroxisomal ghosts is significantly increased. Upon expression of PEX1, import competence and abundance of peroxisomes was adjusted to the level of normal HEK cells. In contrast, expression of an alternatively spliced PEX1 isoform lacking 321 amino acids of the N-terminal region failed to rescue the peroxisomal import defects but reduced the number of peroxisomal vesicles. All in all, the data suggest a novel 'moonlighting' function of human PEX1 in the regulation of pre-peroxisomal vesicles.


ATPases Associated with Diverse Cellular Activities , Organelle Biogenesis , Peroxisomes , Humans , ATPases Associated with Diverse Cellular Activities/genetics , ATPases Associated with Diverse Cellular Activities/metabolism , Cell Line , Membrane Proteins/genetics , Membrane Proteins/metabolism , Peroxins/genetics , Peroxins/analysis , Peroxins/metabolism , Peroxisomal Disorders/genetics , Peroxisomal Disorders/metabolism , Peroxisomes/genetics , Peroxisomes/metabolism , Protein Isoforms/metabolism
3.
Biogerontology ; 24(1): 81-97, 2023 02.
Article En | MEDLINE | ID: mdl-36209442

Ageing is characterized by changes in several cellular processes, with dysregulation of peroxisome function being one of them. Interestingly, the most conserved function of peroxisomes, ROS homeostasis, is strongly associated with ageing and age-associated pathologies. Previous studies have identified a role for peroxisomes in the regulation of chronological lifespan in yeast. In this study, we report the effect of altered peroxisome number on the chronological lifespan of yeast in two different growth media conditions. Three mutants, pex11, pex25 and pex27, defective in peroxisome fission, have been thoroughly investigated for the chronological lifespan. Reduced chronological lifespan of all the mutants was observed in peroxisome-inducing growth conditions. Furthermore, the combined deletion pex11pex25 exhibited the most prominent reduction in lifespan. Interestingly altered peroxisomal phenotype upon ageing was observed in all the cells. Increased ROS accumulation and reduced catalase activity was exhibited by chronologically aged mutant cells. Interestingly, mutants with reduced number of peroxisomes concomitantly also exhibited an accumulation of free fatty acids and increased number of lipid droplets. Taken together, our results reveal a previously unrealized effect of fission proteins in the chronological lifespan of yeast.


Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Peroxisomes/metabolism , Reactive Oxygen Species/metabolism , Longevity , Peroxins/genetics , Peroxins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism
4.
Curr Genet ; 68(5-6): 537-550, 2022 Dec.
Article En | MEDLINE | ID: mdl-36242632

Peroxisomes are highly dynamic organelles present in most eukaryotic cells. They also play an important role in human health and the optimum functioning of cells. An extensive repertoire of proteins is associated with the biogenesis and function of these organelles. Two protein families that are involved in regulating peroxisome number in a cell directly or indirectly are Pex11 and Pex30. Interestingly, these proteins are also reported to regulate the contact sites between peroxisomes and other cell organelles such as mitochondria, endoplasmic reticulum and lipid droplets. In this manuscript, we review our current knowledge of the role of these proteins in peroxisome biogenesis in various yeast species. Further, we also discuss in detail the role of these protein families in the regulation of inter-organelle contacts in yeast.


Peroxisomes , Saccharomyces cerevisiae Proteins , Humans , Peroxisomes/genetics , Peroxisomes/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Peroxins/genetics , Peroxins/metabolism , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism
5.
Cells ; 11(20)2022 10 13.
Article En | MEDLINE | ID: mdl-36291074

Peroxisome biogenesis disorders (due to PEX gene mutations) are associated with symptoms that range in severity and can lead to early childhood death, but a common feature is hearing impairment. In this study, mice carrying Pex3 mutations were found to show normal auditory development followed by an early-onset progressive increase in auditory response thresholds. The only structural defect detected in the cochlea at four weeks old was the disruption of synapses below inner hair cells. A conditional approach was used to establish that Pex3 expression is required locally within the cochlea for normal hearing, rather than hearing loss being due to systemic effects. A lipidomics analysis of the inner ear revealed a local reduction in plasmalogens in the Pex3 mouse mutants, comparable to the systemic plasmalogen reduction reported in human peroxisome biogenesis disorders. Thus, mice with Pex3 mutations may be a useful tool to understand the physiological basis of peroxisome biogenesis disorders.


Ear, Inner , Hearing Loss , Animals , Child, Preschool , Humans , Mice , Ear, Inner/metabolism , Hearing/physiology , Hearing Loss/genetics , Hearing Loss/metabolism , Lipoproteins/metabolism , Membrane Proteins/metabolism , Mutation/genetics , Peroxins/genetics , Plasmalogens
6.
Mol Genet Metab ; 137(1-2): 68-80, 2022.
Article En | MEDLINE | ID: mdl-35932552

Impaired peroxisome assembly caused by mutations in PEX genes results in a human congenital metabolic disease called Zellweger spectrum disorder (ZSD), which impacts the development and physiological function of multiple organs. In this study, we revealed a long-standing problem of heterogeneous peroxisome distribution among cell population, so called "peroxisomal mosaicism", which appears in patients with mild form of ZSD. We mutated PEX3 gene in HEK293 cells and obtained a mutant clone with peroxisomal mosaicism. We found that peroxisomal mosaicism can be reproducibly arise from a single cell, even if the cell has many or no peroxisomes. Using time-lapse imaging and a long-term culture experiment, we revealed that peroxisome biogenesis oscillates over a span of days; this was also confirmed in the patient's fibroblasts. During the oscillation, the metabolic activity of peroxisomes was maintained in the cells with many peroxisomes while depleted in the cells without peroxisomes. Our results indicate that ZSD patients with peroxisomal mosaicism have a cell population whose number and metabolic activities of peroxisomes can be recovered. This finding opens the way to develop novel treatment strategy for ZSD patients with peroxisomal mosaicism, who currently have very limited treatment options.


Peroxisomal Disorders , Zellweger Syndrome , Humans , Mosaicism , HEK293 Cells , Membrane Proteins/genetics , Membrane Proteins/metabolism , Peroxisomes/genetics , Peroxisomes/metabolism , Zellweger Syndrome/genetics , Zellweger Syndrome/metabolism , Mutation , Fibroblasts/metabolism , Peroxisomal Disorders/genetics , Peroxisomal Disorders/metabolism , Peroxins/genetics , Lipoproteins/genetics
7.
J Biol Chem ; 298(6): 102038, 2022 06.
Article En | MEDLINE | ID: mdl-35595097

Protein transport to peroxisomes requires various proteins, such as receptors in the cytosol and components of the transport machinery on peroxisomal membranes. The Arabidopsis apem (aberrant peroxisome morphology) mutant apem7 shows decreased efficiency of peroxisome targeting signal 1-dependent protein transport to peroxisomes. In apem7 mutants, peroxisome targeting signal 2-dependent protein transport is also disturbed, and plant growth is repressed. The APEM7 gene encodes a protein homologous to peroxin 4 (PEX4), which belongs to the ubiquitin-conjugating (UBC) protein family; however, the UBC activity of Arabidopsis PEX4 remains to be investigated. Here, we show using electron microscopy and immunoblot analysis using specific PEX4 antibodies and in vitro transcription/translation assay that PEX4 localizes to peroxisomal membranes and possesses UBC activity. We found that the substitution of proline with leucine by apem7 mutation alters ubiquitination of PEX4. Furthermore, substitution of the active-site cysteine residue at position 90 in PEX4, which was predicted to be a ubiquitin-conjugation site, with alanine did not restore the apem7 phenotype. Taken together, these findings indicate that abnormal ubiquitination in the apem7 mutant alters ubiquitin signaling during the process of protein transport, suggesting that the UBC activity of PEX4 is indispensable for efficient protein transport to peroxisomes.


Arabidopsis Proteins , Arabidopsis , Peroxins , Peroxisomes , Ubiquitin-Conjugating Enzymes , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Mutation , Peroxins/genetics , Peroxins/metabolism , Peroxisomes/metabolism , Protein Transport , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitins/metabolism
8.
Mol Cell Biochem ; 477(11): 2643-2656, 2022 Nov.
Article En | MEDLINE | ID: mdl-35598219

Lithium chloride (LiCl) is a widely used and extensively researched drug for the treatment of bipolar disorder (BD). As a result, LiCl has been the subject of research studying its toxicity, mode of action, and downstream cellular responses. LiCl has been shown to influence cell signaling and signaling transduction pathways through protein kinase C and glycogen synthase kinase-3 in mammalian cells. LiCl's significant downstream effects on the translational pathway necessitate further investigation. In yeast, LiCl is found to lower the activity and alter the expression of PGM2, a gene encoding a sugar-metabolism enzyme phosphoglucomutase. When phosphoglucomutase activity is reduced in the presence of galactose, intermediates of galactose metabolism aggregate, causing cell sensitivity to LiCl. In this study, we identified that deleting the genes PEX11 and RIM20 increases yeast LiCl sensitivity. We further show that PEX11 and RIM20 regulate the expression of PGM2 mRNA at the translation level. The observed alteration of translation seems to target the structured 5'-untranslated region (5'-UTR) of the PGM2 mRNA.


Lithium Chloride , Membrane Proteins , Peroxins , Saccharomyces cerevisiae Proteins , Galactose , Lithium Chloride/pharmacology , Membrane Proteins/genetics , Peroxins/genetics , Phosphoglucomutase/genetics , Phosphoglucomutase/metabolism , RNA, Messenger/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Untranslated Regions
9.
Elife ; 112022 04 11.
Article En | MEDLINE | ID: mdl-35404228

Autophagy receptor (or adaptor) proteins facilitate lysosomal destruction of various organelles in response to cellular stress, including nutrient deprivation. To what extent membrane-resident autophagy receptors also respond to organelle-restricted cues to induce selective autophagy remains poorly understood. We find that latent activation of the yeast pexophagy receptor Atg36 by the casein kinase Hrr25 in rich media is repressed by the ATPase activity of Pex1/6, the catalytic subunits of the exportomer AAA+ transmembrane complex enabling protein import into peroxisomes. Quantitative proteomics of purified Pex3, an obligate Atg36 coreceptor, support a model in which the exportomer tail anchored to the peroxisome membrane represses Atg36 phosphorylation on Pex3 without assistance from additional membrane factors. Indeed, we reconstitute inhibition of Atg36 phosphorylation in vitro using soluble Pex1/6 and define an N-terminal unstructured region of Atg36 that enables regulation by binding to Pex1. Our findings uncover a mechanism by which a compartment-specific AAA+ complex mediating organelle biogenesis and protein quality control staves off induction of selective autophagy.


Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , ATPases Associated with Diverse Cellular Activities/metabolism , Autophagy/physiology , Autophagy-Related Proteins/metabolism , Casein Kinase I/metabolism , Macroautophagy , Membrane Proteins/metabolism , Peroxins/genetics , Peroxins/metabolism , Peroxisomes/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
10.
Curr Genet ; 68(2): 207-225, 2022 Apr.
Article En | MEDLINE | ID: mdl-35220444

Peroxisomes are single membrane-bound organelles ubiquitously present in several cell types and are associated with cell and tissue-specific functions. Their role in cellular ageing is under investigation in various model systems. Metabolism of cellular reactive oxygen species is a universal function performed by these organelles. In this study, we investigated alterations in peroxisome number upon early replicative ageing of yeast cells. Increase in the number of peroxisomes in replicatively aged mother cells of wild-type yeast was observed when cultured in both peroxisome-inducing and non-inducing medium. Further, we investigated if this increase in peroxisome number in replicatively aged cells is due to enhanced peroxisome proliferation. For this, the number of peroxisomes in replicatively aged mother cells of pex11, pex25 and pex11pex25 was analysed. Increased percentage of aged cells was observed in pex25 and pex11pex25 cells cultured in peroxisome-inducing oleic acid medium. Interestingly, when cultured in oleic acid, young mother cells devoid of Pex11 showed reduced peroxisome proliferation compared to old mother cells. Induced activity of the antioxidant enzyme catalase and reduced accumulation of reactive oxygen species were reported in all studied strains when cultured in oleic acid medium. Further, our data also suggest that replicatively aged cells with increased peroxisome number also display mitochondrial dysfunction and fragmentation in all the strains studied. In conclusion, our data suggests a correlation between increase in peroxisome number and replicative age of yeast cells and interestingly this increase seems to be partly dependent on the fission proteins.


Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Cell Proliferation , Membrane Proteins/metabolism , Peroxins/genetics , Peroxins/metabolism , Peroxisomes/genetics , Peroxisomes/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
11.
Oncol Rep ; 47(3)2022 Mar.
Article En | MEDLINE | ID: mdl-35059740

Lung cancer is a common cancer type, and has the highest mortality rate in the world. A genome­wide association study suggests that the genetic marker rs9390123 is significantly associated with DNA repair capacity (DRC) in lung cancer. Analysis of the data derived from the 1000 Genomes Project indicated that there is another single nucleotide polymorphism (SNP), rs9399451, in strong linkage disequilibrium with rs9390123 in Caucasian individuals, thus suggesting that this SNP could be associated with DRC. However, the causal SNP and mechanism of DRC remain unclear. In the present study, dual luciferase assay results indicated that both SNPs are functional in lung cells. Through chromosome conformation capture, an enhancer containing the two functional SNPs was observed to bind the promoter of peroxisomal biogenesis factor 3 and phosphatase and actin regulator 2 antisense RNA 1 (PHACTR2­AS1). Knockdown of PHACTR2­AS1 could significantly influence lung cell proliferation, colony formation, migration and wound healing, which verified that PHACTR2­AS1 is a novel oncogene for lung cancer. Through chromatin immunoprecipitation, the transcription factor POU class 2 homeobox 1 (POU2F1) was identified to bind to the surrounding segments of these two SNPs, and their interaction was investigated. The present study identified the mechanism via which rs9390123 and rs9399451 could influence DRC.


DNA Repair/genetics , Lipoproteins/genetics , Lung Neoplasms/genetics , Membrane Proteins/genetics , Microfilament Proteins/genetics , Nerve Tissue Proteins/genetics , Peroxins/genetics , Polymorphism, Single Nucleotide/genetics , RNA, Antisense/genetics , Gene Expression Regulation, Neoplastic , Genome-Wide Association Study , Humans , Oncogenes/genetics
12.
Neuropediatrics ; 53(3): 159-166, 2022 06.
Article En | MEDLINE | ID: mdl-35038753

A 4-year-old boy presented with subacute onset of cerebellar ataxia. Neuroimaging revealed cerebellar atrophy. Metabolic screening tests aiming to detect potentially treatable ataxias showed an increased value (fourfold upper limit of normal) for phytanic acid and elevated very-long-chain fatty acid (VLCFA) ratios (C24:0/C22:0 and C26:0/C22:0), while absolute concentrations of VLCFA were normal. Genetic analysis identified biallelic variants in PEX10. Immunohistochemistry confirmed pathogenicity in the patients' cultured fibroblasts demonstrating peroxisomal mosaicism with a general catalase import deficiency as well as conspicuous peroxisome morphology as an expression of impaired peroxisomal function. We describe for the first time an elongated peroxisome morphology in a patient with PEX10-related cerebellar ataxia.A literature search yielded 14 similar patients from nine families with PEX10-related cerebellar ataxia, most of them presenting their first symptoms between 3 and 8 years of age. In 11/14 patients, the first and main symptom was cerebellar ataxia; in three patients, it was sensorineural hearing impairment. Finally, all 14 patients developed ataxia. Polyneuropathy (9/14) and cognitive impairment (9/14) were common associated findings. In 12/13 patients brain MRI showed cerebellar atrophy. Phytanic acid was elevated in 8/12 patients, while absolute concentrations of VLCFA levels were in normal limits in several patients. VLCFA ratios (C24:0/C22:0 and/or C26:0/C22:0), though, were elevated in 11/11 cases. We suggest including measurement of phytanic acid and VLCFA ratios in metabolic screening tests in unexplained autosomal recessive ataxias with cerebellar atrophy, especially when there is an early onset and symptoms are mild.


Cerebellar Ataxia , Ataxia/genetics , Atrophy , Cerebellar Ataxia/diagnosis , Cerebellar Ataxia/genetics , Child, Preschool , Genetic Testing , Humans , Male , Peroxins/genetics , Phytanic Acid , Receptors, Cytoplasmic and Nuclear/genetics
13.
Nat Metab ; 3(12): 1648-1661, 2021 12.
Article En | MEDLINE | ID: mdl-34903883

To liberate fatty acids (FAs) from intracellular stores, lipolysis is regulated by the activity of the lipases adipose triglyceride lipase (ATGL), hormone-sensitive lipase and monoacylglycerol lipase. Excessive FA release as a result of uncontrolled lipolysis results in lipotoxicity, which can in turn promote the progression of metabolic disorders. However, whether cells can directly sense FAs to maintain cellular lipid homeostasis is unknown. Here we report a sensing mechanism for cellular FAs based on peroxisomal degradation of FAs and coupled with reactive oxygen species (ROS) production, which in turn regulates FA release by modulating lipolysis. Changes in ROS levels are sensed by PEX2, which modulates ATGL levels through post-translational ubiquitination. We demonstrate the importance of this pathway for non-alcoholic fatty liver disease progression using genetic and pharmacological approaches to alter ROS levels in vivo, which can be utilized to increase hepatic ATGL levels and ameliorate hepatic steatosis. The discovery of this peroxisomal ß-oxidation-mediated feedback mechanism, which is conserved in multiple organs, couples the functions of peroxisomes and lipid droplets and might serve as a new way to manipulate lipolysis to treat metabolic disorders.


Fatty Acids/metabolism , Lipolysis , Oxidation-Reduction , Peroxisomes/metabolism , Acyltransferases/metabolism , Disulfides , Fatty Liver/etiology , Fatty Liver/metabolism , Fatty Liver/pathology , Gene Expression Regulation , HEK293 Cells , Humans , Lipid Metabolism , Liver/metabolism , Models, Biological , Peroxins/genetics , Peroxins/metabolism , Protein Binding , Protein Stability , Reactive Oxygen Species/metabolism , Ubiquitination
14.
Int J Mol Sci ; 22(23)2021 Dec 01.
Article En | MEDLINE | ID: mdl-34884833

Protein import into the endoplasmic reticulum (ER) is the first step in the biogenesis of around 10,000 different soluble and membrane proteins in humans. It involves the co- or post-translational targeting of precursor polypeptides to the ER, and their subsequent membrane insertion or translocation. So far, three pathways for the ER targeting of precursor polypeptides and four pathways for the ER targeting of mRNAs have been described. Typically, these pathways deliver their substrates to the Sec61 polypeptide-conducting channel in the ER membrane. Next, the precursor polypeptides are inserted into the ER membrane or translocated into the ER lumen, which may involve auxiliary translocation components, such as the TRAP and Sec62/Sec63 complexes, or auxiliary membrane protein insertases, such as EMC and the TMCO1 complex. Recently, the PEX19/PEX3-dependent pathway, which has a well-known function in targeting and inserting various peroxisomal membrane proteins into pre-existent peroxisomal membranes, was also found to act in the targeting and, putatively, insertion of monotopic hairpin proteins into the ER. These either remain in the ER as resident ER membrane proteins, or are pinched off from the ER as components of new lipid droplets. Therefore, the question arose as to whether this pathway may play a more general role in ER protein targeting, i.e., whether it represents a fourth pathway for the ER targeting of precursor polypeptides. Thus, we addressed the client spectrum of the PEX19/PEX3-dependent pathway in both PEX3-depleted HeLa cells and PEX3-deficient Zellweger patient fibroblasts by an established approach which involved the label-free quantitative mass spectrometry of the total proteome of depleted or deficient cells, as well as differential protein abundance analysis. The negatively affected proteins included twelve peroxisomal proteins and two hairpin proteins of the ER, thus confirming two previously identified classes of putative PEX19/PEX3 clients in human cells. Interestingly, fourteen collagen-related proteins with signal peptides or N-terminal transmembrane helices belonging to the secretory pathway were also negatively affected by PEX3 deficiency, which may suggest compromised collagen biogenesis as a hitherto-unknown contributor to organ failures in the respective Zellweger patients.


Endoplasmic Reticulum/metabolism , Lipoproteins/metabolism , Membrane Proteins/metabolism , Peroxins/metabolism , Proteome/analysis , Proteomics/methods , Fibroblasts/cytology , Fibroblasts/metabolism , HeLa Cells , Humans , Lipoproteins/antagonists & inhibitors , Lipoproteins/genetics , Mass Spectrometry , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/genetics , Peroxins/antagonists & inhibitors , Peroxins/genetics , Peroxisomes/metabolism , Protein Transport , RNA Interference , RNA, Small Interfering/metabolism , Zellweger Syndrome/metabolism , Zellweger Syndrome/pathology
15.
Mol Genet Metab ; 133(3): 307-323, 2021 07.
Article En | MEDLINE | ID: mdl-34016526

In Zellweger syndrome (ZS), lack of peroxisome function causes physiological and developmental abnormalities in many organs such as the brain, liver, muscles, and kidneys, but little is known about the exact pathogenic mechanism. By disrupting the zebrafish pex2 gene, we established a disease model for ZS and found that it exhibits pathological features and metabolic changes similar to those observed in human patients. By comprehensive analysis of the fatty acid profile, we found organ-specific accumulation and reduction of distinct fatty acid species, such as an accumulation of ultra-very-long-chain polyunsaturated fatty acids (ultra-VLC-PUFAs) in the brains of pex2 mutant fish. Transcriptome analysis using microarray also revealed mutant-specific gene expression changes that might lead to the symptoms, including reduction of crystallin, troponin, parvalbumin, and fatty acid metabolic genes. Our data indicated that the loss of peroxisomes results in widespread metabolic and gene expression changes beyond the causative peroxisomal function. These results suggest the genetic and metabolic basis of the pathology of this devastating human disease.


Fatty Acids/metabolism , Gene Expression , Peroxisomes/pathology , Zellweger Syndrome/genetics , Zellweger Syndrome/physiopathology , Animals , Disease Models, Animal , Fatty Acids/analysis , Fatty Acids/classification , Female , Gene Expression Profiling , Humans , Liver/pathology , Male , Peroxins/genetics , Zebrafish/genetics
16.
Int J Mol Sci ; 22(9)2021 Apr 30.
Article En | MEDLINE | ID: mdl-33946275

The tetratricopeptide repeat-containing Rab8b-interacting protein (TRIP8b/PEX5R) is an interaction partner and auxiliary subunit of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, which are key for rhythm generation in the brain and in the heart. Since TRIP8b is expressed in central neurons but not in cardiomyocytes, the TRIP8b-HCN interaction has been studied intensely in the brain, but is deemed irrelevant in the cardiac conduction system. Still, to date, TRIP8b has not been studied in the intrinsic cardiac nervous system (ICNS), a neuronal network located within epicardial fat pads. In vitro electrophysiological studies revealed that TRIP8b-deficient mouse hearts exhibit increased atrial refractory and atrioventricular nodal refractory periods, compared to hearts of wild-type littermates. Meanwhile, heart rate, sino-nodal recovery time, and ventricular refractory period did not differ between genotypes. Trip8b mRNA was detected in the ICNS by quantitative polymerase chain reaction. RNAscope in situ hybridization confirmed Trip8b localization in neuronal somata and nerve fibers. Additionally, we found a very low amount of mRNAs in the sinus node and atrioventricular node, most likely attributable to the delicate fibers innervating the conduction system. In contrast, TRIP8b protein was not detectable. Our data suggest that TRIP8b in the ICNS may play a role in the modulation of atrial electrophysiology beyond HCN-mediated sino-nodal control of the heart.


Heart/physiology , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Membrane Proteins/metabolism , Peroxins/metabolism , Animals , Gene Deletion , Gene Expression , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Myocardium/metabolism , Peroxins/genetics , Protein Interaction Maps , RNA, Messenger/genetics
17.
Andrology ; 9(4): 1151-1165, 2021 07.
Article En | MEDLINE | ID: mdl-33784440

BACKGROUND: Severe spermatogenic failure (SpF) represents the most extreme manifestation of male infertility, as it decreases drastically the semen quality leading to either severe oligospermia (SO, <5 million spermatozoa/mL semen) or non-obstructive azoospermia (NOA, complete lack of spermatozoa in the ejaculate without obstructive causes). OBJECTIVES: The main objective of the present study is to analyze in the Iberian population the effect of 6 single-nucleotide polymorphisms (SNPs) previously associated with NOA in Han Chinese through genome-wide association studies (GWAS) and to establish their possible functional relevance in the development of specific SpF patterns. MATERIALS AND METHODS: We genotyped 674 Iberian infertile men (including 480 NOA and 194 SO patients) and 1058 matched unaffected controls for the GWAS-associated variants PRMT6-rs12097821, PEX10-rs2477686, CDC42BPA-rs3000811, IL17A-rs13206743, ABLIM1-rs7099208, and SOX5-rs10842262. Their association with SpF, SO, NOA, and different NOA phenotypes was evaluated by logistic regression models, and their functional relevance was defined by comprehensive interrogation of public resources. RESULTS: ABLIM1-rs7099208 was associated with SpF under both additive (OR = 0.86, p = 0.036) and dominant models (OR = 0.78, p = 0.026). The CDC42BPA-rs3000811 minor allele frequency was significantly increased in the subgroup of NOA patients showing maturation arrest (MA) of germ cells compared to the remaining NOA cases under the recessive model (OR = 4.45, p = 0.044). The PEX10-rs2477686 SNP was associated with a negative testicular sperm extraction (TESE) outcome under the additive model (OR = 1.32, p = 0.034). The analysis of functional annotations suggested that these variants affect the testis-specific expression of nearby genes and that lincRNA may play a role in SpF. CONCLUSIONS: Our data support the association of three previously reported NOA risk variants in Asians (ABLIM1-rs7099208, CDC42BPA-rs3000811, and PEX10-rs2477686) with different manifestations of SpF in Iberians of European descent, likely by influencing gene expression and lincRNA deregulation.


Infertility, Male/genetics , LIM Domain Proteins/genetics , Microfilament Proteins/genetics , Myotonin-Protein Kinase/genetics , Peroxins/genetics , Polymorphism, Single Nucleotide/genetics , Receptors, Cytoplasmic and Nuclear/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Male , Portugal , Semen Analysis , Spain
18.
PLoS One ; 16(1): e0245749, 2021.
Article En | MEDLINE | ID: mdl-33503027

The objective of this study is to determine the effect of Chinese wolfberry (Lycium barbarum) and Astragalus (Astragalus membranaceus) extract (WAE) on the antioxidant capacity of Tibetan pig liver, and discussed the regulatory effect of WAE on the liver antioxidant mechanism. Twelve healthy 120-day-old Tibetan black pigs (35±2 kg) were divided randomly into two groups. The WAE group was fed a basal diet supplemented with 1% WAE for 90 days. The control group was fed the same diet, but without the WAE. We found that liver superoxide dismutase 1 (SOD1) activity (P<0.05), total antioxidative capacity (T-AOC) (P<0.05), and catalase (CAT) activity (P<0.01) significantly increased in the WAE group compared with the control group; malondialdehyde (MDA) content decreased, but this was not significant (P >0.05). Transcriptome sequencing analysis detected 106 differentially expressed genes (DEGs) related to oxidative stress. GO enrichment analysis showed these DEGs were involved in the positive regulation of reactive oxygen metabolism and biosynthesis, process regulation, and regulation of the oxidative stress response. KEGG Pathway enrichment analysis showed they were enriched in the PI3K-Akt, AMPK, Rap1, and peroxisome signaling pathways. The expression levels of key peroxisome biosynthesis genes (e.g., PEX3 and PEX11B) and key antioxidant genes (e.g., CAT and SOD1) were significantly higher in the WAE group than in the control group. The PRDX1 and PRDX5 content also was significantly higher in the WAE group. This study showed that the WAE regulated the antioxidant and anti-stress ability of Tibetan pig liver through a "peroxisome antioxidant-oxidant stress" signaling pathway.


Antioxidants/pharmacology , Astragalus Plant/chemistry , Liver/drug effects , Lycium/chemistry , Plant Extracts/pharmacology , Animals , Liver/metabolism , Peroxins/genetics , Peroxins/metabolism , Peroxisomes/metabolism , Signal Transduction , Swine
19.
Aging (Albany NY) ; 13(1): 555-577, 2020 12 03.
Article En | MEDLINE | ID: mdl-33289699

The relationship between autophagy and immunity has been thoroughly investigated. However, little is known about the role of autophagy in shaping the immune-microenvironment of periodontitis. Thus, we aim to explore the impact of autophagy on the immune-microenvironment of periodontitis. The expression distinctions of autophagy genes between healthy and periodontitis samples have been investigated. The connections between autophagy and immune characteristics including infiltrating immunocyte, immune reaction and human leukocyte antigen (HLA) gene were evaluated. The distinct autophagy-mediated expression patterns were identified and immune characteristics under distinct patterns were revealed. Autophagy phenotype-related genes were identified. 16 autophagy genes were dysregulated and a ten-autophagy classifier was constructed that can well distinguish periodontitis and healthy samples. Immune characteristics were closely related to autophagy: higher expression of EDEM1 positively relates to infiltrating activated B cell; NCKAP1 negatively relates to monocyte; CXCR4 enhances BCR Signaling Pathway and PEX3 decreases the activity of TNF Family Members Receptors; positive expression correlation of EDEM1-HLADOB and negative correlation of RAB11A-HLADOB were observed. Two distinct autophagy expression patterns were identified which demonstrated different immune characteristics. 4309 autophagy phenotype-related genes were identified, and 219 of them were related to immunity, whose biological functions were found to be involved in immunocyte regulations. Our study revealed the strong impact of autophagy on the immune-microenvironment of periodontitis and brought new insights into the understanding of the pathogenesis of periodontitis.


Autophagy/immunology , Cellular Microenvironment/immunology , Periodontitis/immunology , Adaptor Proteins, Signal Transducing/genetics , Autophagy/genetics , B-Lymphocytes/immunology , Case-Control Studies , HLA-D Antigens/genetics , Humans , Lipoproteins/genetics , Membrane Proteins/genetics , Monocytes/immunology , Periodontitis/genetics , Peroxins/genetics , Receptors, Antigen, B-Cell/metabolism , Receptors, CXCR4/genetics , Signal Transduction , Transcriptome , rab GTP-Binding Proteins/genetics
20.
J Biol Chem ; 295(48): 16292-16298, 2020 11 27.
Article En | MEDLINE | ID: mdl-32958557

In macroautophagy (hereafter autophagy), cytoplasmic molecules and organelles are randomly or selectively sequestered within double-membrane vesicles called autophagosomes and delivered to lysosomes or vacuoles for degradation. In selective autophagy, the specificity of degradation targets is determined by autophagy receptors. In the budding yeast Saccharomyces cerevisiae, autophagy receptors interact with specific targets and Atg11, resulting in the recruitment of a protein complex that initiates autophagosome formation. Previous studies have revealed that autophagy receptors are regulated by posttranslational modifications. In selective autophagy of peroxisomes (pexophagy), the receptor Atg36 localizes to peroxisomes by binding to the peroxisomal membrane protein Pex3. We previously reported that Atg36 is phosphorylated by Hrr25 (casein kinase 1δ), increasing the Atg36-Atg11 interaction and thereby stimulating pexophagy initiation. However, the regulatory mechanisms underlying Atg36 phosphorylation are unknown. Here, we show that Atg36 phosphorylation is abolished in cells lacking Pex3 or expressing a Pex3 mutant defective in the interaction with Atg36, suggesting that the interaction with Pex3 is essential for the Hrr25-mediated phosphorylation of Atg36. Using recombinant proteins, we further demonstrated that Pex3 directly promotes Atg36 phosphorylation by Hrr25. A co-immunoprecipitation analysis revealed that the interaction of Atg36 with Hrr25 depends on Pex3. These results suggest that Pex3 increases the Atg36-Hrr25 interaction and thereby stimulates Atg36 phosphorylation on the peroxisomal membrane. In addition, we found that Pex3 binding protects Atg36 from proteasomal degradation. Thus, Pex3 confines Atg36 activity to the peroxisome by enhancing its phosphorylation and stability on this organelle.


Autophagy-Related Proteins/metabolism , Casein Kinase I/metabolism , Membrane Proteins/metabolism , Peroxins/metabolism , Proteasome Endopeptidase Complex/metabolism , Proteolysis , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Autophagy-Related Proteins/genetics , Casein Kinase I/genetics , Membrane Proteins/genetics , Peroxins/genetics , Phosphorylation , Proteasome Endopeptidase Complex/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
...